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Abstract

The method of coupled azimuthal potentials (CAP) was applied to a

waveguide model of an axially symmetric engine inlet to analyze the fields

in the region where the front face of the engine terminates the waveguide.

Appropriate boundary conditions were derived and the finite element method

was used to solve for the potentials.

The Lagrangian of the CAP equations does not provide for the enforce-

ment of Neumann boundary conditions. This prevents exact implementation

Of the correct boundary conditions for the azimuthal magnetic field.

Dirichlet boundary conditions for the azimuthal electric and magnetic

fields were enforced for a standing wave condition in the inlet model

with a conducting flat plate termination. The computed values for the

interior field components were compared by evaluating the standard

deviation. Three trials were performed with varying finite element mesh

densities. It was found that as the mesh density increased, the stand-

ard deviation for the computed field components decreased. Hg" ,

from an interpolation of the error measurements, it was dtermined that

an extremely fine mesh is required for an acceptable error (approx-

imately 7500 tr2angles/o for 2% error). For this reason the finite
0

element implementation of the CAP equations for this jet engine inlet

model is unfeasible.

*: (*.:--
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A FINITE ELEMENT COMPUTATION OF THE

' ELECTROMAGNETIC FIELDS WITHIN AN

-' ENGINE INLET MODEL

1. Introduction

Background

The jet engine inlet provides a significant contribution to the

overall radar cross section of a modern aircraft. Before this contribu-

ticn can be effectively reduced, the electromagnetic wave scattering

phencmena from this region must be accurately evaluated and understood.

This is a relatively difficult problem due to the generally complex

nature of the geometry of the inlet. However, if an understanding of

* the scattering mechanisms from a simple intake geometry is developed,

the insight could be analytically applied to the complex geometry of an

actual inlet.

- .; The engine intake usually consists of a hollow tubular structure

Sterminatea by the fan blades of the engine compressor. It is well known

that these fan blades significantly affect the radar return by modulating

the echo (1:435). For this reason, any simplification in the geometry

of an inlet model, would have to provide for the bladed structure of the

compressor. The model to be used here will consist of a hollow circular

"4 cylindrical waveguide terminated by a conducting cone centered on a flat.j

plate. Boundary conditions for the flat plate will be appropriately

chosen to simulate the fan blade configuration.

Problem

The basic problem is to evaluate the electromagnetic wave inter-

. actions with a simplified termination model of a jet engine inlet.

-L1
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Scop

:This study will attempt to determine the scattered electromagnetic

fields from a proposed intake termination model. No attempt will be made

to recomend methods of reducing the radar cross section of a jet engine.

Literature Review

Several authors have previously developed and analyzed models of the

jet engine intake area in an attempt to provide insight into the electro-

magnetic scattering.

John W. Moll and Rolf G. Seecamp analyzed an inlet modelled by a

terminated circular cylindrical waveguide. The termination, which repre-

- sents the initial stages of a canpressor, consists of a pair of conducting

planar blade structures as depicted in Figure 1. Each structure has a

different number of blades and blade widths. The field incident on the

- Opening of the inlet is represented by a sum of inwardly travelling TE

modes. The backscattered field from the termination is expressed as a

sum of TE modes travelling toward the opening of the duct. Any TM modes

excited by the termination are neglected. Along the surface of the

blades, the tangential electric field was set to zero. Using this

boundary condition, a set of equations was obtained to solve for the

scattering coefficients for the modes generated at the termination. The

total field at the opening of the inlet is then equated to the sum of

the incident and reflected modes. The Stratton-Chn integral is then ap-

plied to obtain the scattered field from any aspect angle (2).

A quite similar model was analyzed by P. 1H. Pathak and C. C. Huang.

It consists of a hollow circular cylindrical waveguide terminated by a

single pla; r blade ructure as in Figure 2. All of the blades are

2
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assumed to be of the same wiA#-h separated by a finite angular distance.

Basically their approach is to calculate scattering matrices at the

opening of the duct (SII, S12, S22 and S21) due to both an externally

-%; generated incident field and the reflected field due to the blade

structure discontinuity. All of these matrices are calculated using

the Uniform Theory of Diffraction. The scattering matrix at the

termination is evaluated by a geoetrical optics approximation to the

current distribution (JB = 2-A x H) on the fan blades. The radar cross

section of this model is then determined via the Multiple Scattering

Method, which relates the backscattered field to the incident field (3).

T.W. Johnson and D. L. Hoffatt analyzed the wave scattering from a

circular cylindrical waveguide with a non-planar termination as illus-

trated in Figure 3. The termination considered is an axially symmetric

cone centered on a flat plate. Both the cone and plate are perfectly

conducting. Using the Wiener-Hopf technique, the scattering matrices

for the opening of the waveguide are calculated. The dyadic magnetic

Green's function and the Method of Moments are then used to numerically

compute the current distribution on the cone. From this distribution,

the reflection coefficient for the cone was determined for the TEll mode.

The radar cross section is then evaluated using this backscatter coef-

ficient and the scattering matrices calculated for the open end of the

waveguide (4).

Approach

The i let model that will be analyzed represents a slight modifica-

tion of the model used by Johnson and Moffat. It consists of a circular

cylindrical waveguide terminated by a perfectly conducting cone centered

: (c on a flat plate. However, the boundary conditions enforced on the plate

5
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will not be those of a perfect conductor. Instead, a set of boundary

conditions will be used to make the flat plate resemble the blade

3structure of the compressor termination in an actual inlet.
Since fan blades are separated by a finite angular distance, any

current induced on the blades cannot flow azimuthally. To simulate this

effect in the model, the radially directed tangential magnetic field at

the surface of the flat plate will be set to zero. This will eliminate

azimuthal current in the plate and make it appear as a set of infinitely

thin wires directed radially outward. The radially directed tangential

electric field at the surface of the plate will also be set to zero,

which is the appropriate boundary condition for a conductor.

With the aid of the Coupled Azimuthal Potential (CAP) formulation,

the finite element method and the unimoment method, the total fields

within the model will be determined. The CAP consists of two second

order differential equations developed by Morgan, Chang and Mei to solve

scattering problems involving generally lossy isotropic inhomogenous

rotationally symmetric media (5). These potentials, which are directly

related to the electric and magnetic fields, will be numerically computed

using the finite element method. This requires that an integral func-

tional be used to set up the numerical solution for the fields in the

waveguide. The functional, when minimized, is analytically equivalent

to enforcing the differential equations. Finally, the unimoment method

will be used to determine a line.x combination of fields which will

satisfy the boundary conditions of the inlet model.

Chapter 11 will be devoted to presenting the CAP formulation theory

and the finite element implementation of the differential equations. In

addition, the application of the unimoment method to this problem will

be detailed.

p .7
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Chapter III will give the results and Chapter IV the conclusions

and recomendations resulting from the analysis of the inlet model.
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II. Analytical Formulation
L• %

This chapter will discuss the analysis used in obtaining the system

of equations for evaluation of the electromagnetic fields in the interior

of the engine inlet model. The derivation of the coupled azimuthal po-

tential (CAP) formulation will be presented. Numerical computation of

the CAP by use of the finite element method will also be developed. In

"* addition, the application of the unimoment method to calculate the total

fields will be discussed.

CAP Formulation

The CAP is valid in generally inhomogenous isotropic rotationally

symmetric media (bodies of revolution) as shown in Figure 4. Its basic

utility is that it converts a three-dimensional scattering problem into

one involving only two dimensions. Since the medium is axi-symetric,

the fields have a known functional behavior with respect to the * coord-
inate (in a standard cylindrical coordinate system). Therefore, if the

fields are determined for a constant R-Z cross section, they are known

everywhere in the media.

Z

a S Surface of
Revolution

n

I RE% r (R,Z)

1jr (Rz)

Figure 4. Meridional Two-dimensional Solution Domain (6:203)

9
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The CAP formulation development begins by defining a Cartesian

coordinate system consisting of normalized circular cylindrical co-

ordinates. All points within the system may be given by (R,Z,O) where

R- KoP, Z - Koz, * - * and Ko - 2w/An is the free space wave number

* of the fields. The fields are then expanded into an exponential

Fourier series in the c oordinate:

ECR, Z,0) - Z e (R,Z) exp (jnO) 1)

, H(RZ,.) = - (RZ) exp (Jnf) (2)

where no - io/eo. When these expansions are placed in Maxwell's equa-

tions, V x E - -JwH and V x H j J E, the following coupled system of

equations is obtained:

~. j a[hz,n hn.n (3

aeRn aZ I
.'rh#n az - R (4)

,.reR,n " M L Az - Jnhz,n] (S)

VMSR~ i nez a (R ].n (6)

Rp Zn,n aR

- J [3(Re],n) (.: Rr h Z,n  R -- jne R~n 18

Substituting among thase equations, it can easily be shown that

10
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e (R,Z) jfn(nV0l + RtS x V02) + ('1/R) (9)

h (R,Z) - JfnlnV*2 - REr* x V + (10)

n nn )+ (2R
" W/R - .,n, 02R - h0,n and the gradient operator, V, is defined as

R a/MR + Z a/z. Additionally,

fnR,Z) - Or(R,Z) (rR,Z)R2  n2  11)

From Eqs (9) and (10) the radial and Z directed components of the elec-

tric and magnetic field may be determined. These components may be
i;; shown to be

e(,) jf (ae ~)(12)

28eA - R ?A) (13)
Z (RZ)jfn( Z -R az

aRRI 3 Rh aRh~h (14)hRR~) in( aZ aR

h (RZ) -f '3- R + R 3-- Z (15)
Z n as aR

The coupled potentials, *1 and *2' satisfy a system of partial dif-

ferential equations given by:

* A

Y fn(Re V~l + n# x V 2) + rI/R" 0

V fn(RprV2 -n# x V 1 ) + Or *2/R- 0

To utilize the finite element method to numerically compute the potentials,

it is necessary to develop a Lagrangian functional. The stationary point

Of the integral of this functional is analytically equivalent to the

partial differential equations. For this set of differential equations

. . . .. . . . . . . . . . . . . . . . . . . . . .-.



L fn V* (RCrV* +nx V 2 ) +

2

(RU 2 - n X l - +112 /R (14)

Finite Element Method

The finite element method is a numerical method of calculating the

approximate solution of a partial differential equation in an enclosed

area. It does so by assuming a form of the solution (linear, quadratic,

etc.) within a set of "finite elements" which span the total area. By

integrating an integral functional over each element, the displacement of

a single nodal value on an element is related to adjacent nodal values.

This process results in a system of equations. The simultaneous solution

of this set of equations results in the values of nodal coefficients,

thus providing a piecewise approximation of the solution from node to

node.

When utilizing the Lagrangian, the term ( + produces

a singularity along the R - 0 axis. To overcome this difficulty, a

change of variable must be performed on the scalar potentials, letting

Re#,n - and Rh #,n - *2" It then becomes necessary that the boundary

conditions satisfied by the azimuthal field quantities along R -0 be

specified. These boundary conditions are:

e0,n(RZ) _-O_ h (RZ) - for n2 1 1 (15)

#,ncr IR-2

+ e 0 for n2-1 (16)

aR aR *,n

Rm0

12



The boundary conditions for n - 1 reduce to homogenous Neumann boundary

conditions when the relative permittivity and permeability are invariant

with respect to R (5:416). To enforce these conditions all that is re-

quired is to allow the nodal values to "float".

For the engine inlet problem, the cross section of the model is

subdivided into a finite number of triangular elements. A typical

section is illustrated in Figure 5. The assumption is made that the

scalar azimuthal potentials vary linearly over each of the elements.

This necessitates the use of linear basis functions defined on each

node of every element.

Ith Triangular Element

Figure 5. Typical Finite Element Section of Model Cross Section

These pyramidal functions will have a value of unity on a specified node

and a value of zero on neighboring nodes. For the ith node on the Ith

element, the linear basis function, *i(R,Z), is defined as

Si(R,Z) ai, + bi R+ ci, Z (18)

The real constants ait, bi,t, and c,, for i - 1,2,3 on each element
,.ll

may be evaluated by means of the following equations:

13
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Z2.L R3.1- R2.1 Z3r(

At

b Z3.1t - R3.t (21)

At

.,Z3.J RI.g. - R3.t Zlo. (22)
&2 *1 A t-, 22

Z- . -a (23)b2, I At,

" (24)
2,Z At

ii Zlo R2#E RI. Z12,Z

a3 ,X A Zt (25)

b3 ,t .Z2.t . (26)

-c 3 t Z -- 2. (27)At

where At 1 R., Zl, (28)

1 R2  Z2,1

1 1 3,Z Z3,1

and is twice the area of a triangle (7:547). These computations assume

a clockwise ordering of the node numbers on each element.

The azimuthal field components within the inlet model may now be

expressed as

-(RZ) i 9 *i(R,) (29)

14* a-.;a' . . - .

. . . . .. . . . . . . . . . . . . . . . .. a- ---. --*. . . . . . . . . .. '



A N

and h A(R, Z) 0101 (R, Z) (30)

The complex nodal values of e#,n and h ,n at a particular node, i, are

- represented by ai and 01 respectively (6:204).

The finite element approach begins with the substitution of the

aximuthal field expansions in Eq. (29) and (30) into the integral

functional

"i f"L(RZ,21 1*2'V
*
1 1VV2  (31)

where L(R,Z, I, 2 ,V*I, 2) is defined by Eq (14). This results in

N N
f.(f nV(RZ yii) Rer V(Rly*)+

".

A N N
n. # z V (Rjilii) + V(Rijl Yi)

N A N
R.r V(RjlEli i ) - n x V(Rilyioi)

N .2N 2
C R( izYili)2 " Ur R (i- 1 0i)01 2 dRdZ (32)

The stationary point of F is obtained by differentiating the functional

with respect to each of the nodal coefficients and setting it equal to

zero.

By 8 0
a

N
iff (Rillyi*i) *(Rer V(R#*)) + V(R#)

mn5

°* .+ n x .. .



(c-n *V(R*)) - 2cr, Rim d~d Z

N

-±L±Jf VR) n # x V (R* + V (R$
+ Ulo n m

CRn V (R) - &mRz dd

NA
2±1 jf nVRe*r) *n* x V(R) 2+ VRoim ) d

N

+ E1 ,f2f C V CRfm) *n + x VCRfi)) dRdz

T'herefore

N

8 lly 1 ffn Rer VCR*i) *V(R# 3 ) -er R #imdRdZ
8

NA

+ illA Jnf n V(R# m) **x VCR*1) d2RdZ -0 (33)

Lw3m1,2, *.,N.

N AN

Aff nC #E~~ x *VC(R#*)VC(R 1El81*1 )

N
Riir VCR*) + V (R*3 ) * Rpr VCR -

16



n X V(R E li'i)) 21r BA ili~o dRdZ

r 01 ffn V(R*Q * (RIr MOR)) + V(R M) * RAVR .

- ZlrR# 4i dM2Z

+~~~~ ~ rily f fnV( ~ c V (Rf ) V V(Rt) n # x V (R$1) dRdZ

±~8 2fn 'rVV01  (R*3 ) - 2 ur R~if1*3 d

Ii A

-Ey 2fn R V(RfM) n # x V (R*) dRdZ.

Therefore,

ijli 1nRjrV(Ro1 ) V'(R#* -Ur R* m d.RdZ
a

±l1y± Jf nfn R V (Rf ) * x V (Rfi) dRdZ -0 (34)
a

for mt 112, ... ,j N. For the inlet, only the case for n-I will be examin~ed.

In addition, it will be assumed that -j r 1. Equations (33) and (34)

then become

E"Li : V (R ) V (ROM -oo dd

+ ill f.f V(ROM) * X V (Rf.) dRdZ- 0 (35)

17



N
-ff R V(R i)

° V(ROm ) - Ri m dRdZ

N

i f f 1 V (R) f x V (Rfi) dRdZ =0 (36)
5

Equations (35) and (36) are integrated only over the elements connected

to node m and relate ym and 8m to adjacent nodal values of yi and ai .

For the mesh illustrated in Figure 5, 14 adjacent nodal values will be

related to one another. These equations will produce a 2N x 2N sparse,

banded symmetric matrix, which is characteristic of any finite element

computations.

All integrals to be evaluated in Eqs (35) and (36) are of the gen-

eral form

Prs JmfRrZ' dMdZ (37)
8

r " dRdZ (38)•Q - 1Z

s

A simple method for computing both types of these integrals exists by

-' invoking the two-dimensional Stoke's theorem and converting the surface

integrals into line integrals. The general formula is given by

J.g(R)Zs dRdZ - g(R)Z dR (39
a C

where the integration is performed in a clockwise manner around the tri-

angular elements. The factor g(R) is any arbitrary function of R (6:205).

If Z is expanded in terms of R i.e. Z -mR + b where m -slope and b - Z

intercept, the form of 2rs is

":' 184r



RI
f dR (40)

'-'R i

where n ranges from 0 to r+s+l (6:205). These segmented integrations

will produce complex values as the integration passes through R2  1.

If n - 0

P d Ref 2dR'f A --"dR f dS
. Ri Ri Ri +l

SR R

Ri l+l Ri

m .Sln(-e) f ,n(Ri-1) + .5n(R+-) - ,51n1 f

,.5ft(Rj+l) + .Stn(Ri+l)
+ -1)+ R±nRj1

" .S n(e) i- - .51n(Ri--)+. i1

- n .5(c) - .5n(Rj+l) + .5n(Ri+l)

IR,-l) lRj+l)'

.::' ~ . +1) + .S,( 1 1 -i)11

&A s ilar development for n-l yields

1119

7777777(41)



°R

;.:.:L:" JR (Rj-I) (Rj+IL) + 1

= = R -.5Rn( (42)
Rj (Ri-i) (Ri 1 -1)

Higher order integrals of this form may be generated by the recursion

formula

n-l n-iR R n-2 Rj -R
dR = f dR + n-I (43)

Ri Ri

(6:205).

In general, the homogenous system of linear equations defined by

(35) and (36) does not have a unique solution. However, some values of

nodal coefficients along the exterior boundaries of the inlet model will

be specified as Dirichlet boundary conditions. These boundary conditions

.J) can be used to render a unique solution to the system of equations. Before

the enforcement of boundary conditions, the form of the linear system is

K,1 K1 ,2  K1,3 K,2N Y2 0

K2,1 K2,2 K2,3 K-2,2N 810

K K K31 3,2 3,3 .. 3 ,2 N '2 = 0(4

,* . .:.

%-N,l K 2N, 2  K2N,3 K2N,2N 8N 0

where the K's are generated by integration of the Iagrangian over the

elements and the y's and $'s are the values of the nodal coefficients.

Now if, for example, 80 is specified as a Dirichlet boundary condition,

and has a value of V,, the system may be modified to

20



K 1,1 0 K1,3 ... K1,2N Y1 -K12 V1
.0...,

0 1 0V 1

K3,1 0 K3,1 . K3,2N . -K3,2 V1 (45)

r-2NI 0 2K2,2N -K2N,2 V1

This process is performed for all Dirichlet boundary conditions allowing

a unique solution to be obtained (8:52).

Unimoment Method

The finite element method, in conjunction with the CAP formulation,

can be used to numerically compute a single set of electromagnetic fields

for given Dirichlet boundary conditions. However, h requires that

certain Neumann boundary conditions be met. The unimoment method can be

used to determine a combination of solutions that will satisfy these

Neumann conditions.

,-. Dun~a Condition Foremulations. The solution domain for the

engine inlet model is shown in Figure 6. The included angles a and 6

g ve the slanting angle of the axisyimetric cone and the elevation angle

of the back plate, respectively. All relations derived in this section

follow from Eqs (3) through (8) directly.
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+a 0

Figure 6. Solution Domain for Engine Inlet Model

Boundary Q~ represents the opening of the inlet model. Along

this segment, Dirichiet conditions for the fields incident on the mouth

of the duct are specified. Due to the cylindrical nature of this prob-

lam, these conditions are in terms of the Bessel functions J1 (KcR) for

* and Jn(KR) for h,

Th~e outer wall of the waveguide is labelled Q). Because of the

perfectly conducting nature of this surface, the tangential components

of the electric field, e~ and e, must be identically zero. In terms

of aximuthal field quantities only, the equivalent boundary conditions

are

* 0- (46)

and V(2) n 3R 0. (47)

The-bladed structure of the fans in the initial stages of a cam-

pressor, is approximated by the back plate, As stated earlier,

azimuthal current flow on the face of this plate is to be eliminated.

12his requires enforcement of the boundary condition

22
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hR cos 6 -h sin 6 0 (48)

R z

or equivalently

co's - R !E+R) Cos O + R 4Z) sin 6. (49)

Additionally, it is required that

e cos 6 e sin 6 0 (50)R z

which implies

R sin 5 C - __- R )Cos6 (51)
3z aR BR 3

Since the cone, , like the wall of the waveguide, J, is

perfectly conducting, it has similar boundary conditions. These con-

ditions may be expressed as:

0~a 0 (52)

and

-3 ft - R ) COS IM R _ ~~ sin (53)

for 0 < a < w. At a - 0 and a -, the boundary conditions are

identical to those for (1) which are given by Eqs (15), (16), and (17).

Unimoment Method Formulation. The general process of applying the

unimament method, consists of several steps. First, a form of the field

variations is assumed along each exterior boundary of the inlet model.

Then, using these Dirichlet boundary conditions, the resulting interior

fields are computed using the finite element implementation of the CAP

equations. This process is repeated N times for N different forms of the

field variations. From these N solutions a set of weighting functions

7 -are calatulated to enforce the Neumann boundary conditions in the mean

2sense.
- 23
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As an example, consider the boundary conditions along the exterior wall

Of the circular cylindrical waveguide given by

e -0 (54)

and a ,.0 (55)

Assume that h. varies as sin --. along this surface, for n = 1,2, ... , N

where N is the total number of nodes along the boundaries of the model.

Appropriate field variations along the other boundaries must be also

enforced simultaneously with this one. For each n a solution is obtained,

thus specifying yi, $i, ai, bi and ci for each node. For the total field

solution, which is a linear combination of each of the n solutions, it

is required that

N WaRhin (56)

along the wall of the waveguide. The Wn' s are the weighting functions

for the nth solution. These equations are than enforced using testing

functions such that

n V sin -M dz - o (5)

and consequently enforce the Neumann boundary condition in the mean

sense. These equations will generate a N x N matrix, and produce a

linear system of equations

Sw- 0 (5s)
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To produce a unique solution, the right hand side of the equation must

be non-zero. For this reason some small 6 must be used, 6 < < 1, so that

BW 6 ( 59)

* This is the general method to be used to enforce Neumann boundary condi-

tions.

L-2. ,
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III. Results

The results presented in this section concern only the validation

of the software developed for the finite element implementation of the

coupled azimuthal potential differential equations. Appendix A contains

a listing of the program used for this procedure. In addition, a

description of all variables used in the program is given in this appendix.

To insure the program was correctly computing the azimuthal field

components, it was necessary to enforce boundary conditions for a known

wave solution. For this reason, boundary conditions for a standing wave

in a circular cylindrical waveguide terminated by a flat conducting plate

were used. This required a minor modification of the inlet model. The

angles a and 6, defined in Figure 6, were set to zero and conducting

boundary conditions established along the back plate. As stated earlier

the boundary conditions for a conductor are

o 0 (60)

and 1
V(Rho) n - 0 (61)

Since it is not possible to directly enforce the Neumann condition given

by Equation (61) with the minimized Lagrangian functional, the Dirchlet

boundary ccnditions for a standing wave were applied along all conducting

surfaces.

For a standing wave in a circular cylindrical waveguide, the elec-

tric and magnetic fields must satisfy the following set of equations:

R A Jf(j1 1 ' p/a) sin Kz Z ej  (62)

1.. J2ua
E - 1Xw~ H (63)
P K- p 8#
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j aW z (64)

Hp 1 2 Hz (65)

1 1 32HX
and H. (66) __

=nd 'p -f Z (9:415) (66)

Only azimuthal field quantities are being calculated, so it is only neces-

sary to determine the forms of E and H. Using the above relations it

is easily shown that

A j

E jw J1' (Jll' p/a) sin KzZ ej  (67)

AH, I Kz Jl (J11 ' p/a) cos KzZ ej# (68)

For all computations, the azimuthal dependence is suppressed and A is

assumed to be one.

S As a first test case, a section of waveguide was evaluated with a

radius of .A o and a length of 1.5X,. The finite element division con-

sisted of 96 triangles with 65 nodes. This resulted in a triangular

mesh density of 126 triangles per Xo . Plots of the on-axis results

for the magnitude and phase of e# and h are presented in Figures 7, 8,

9, and 10. In general, as is quite evident, the results are not promis-

ing. As a measure of the error, the square root of the average squared
Serror, i.e.)2/N, was evaluated for the magnitudes of both

azimuthal field quantities. This resulted in a value of .462 for e* and

.524 for h (all values were normalized to one).

It is believed the results from this first trial are so poor because

the triangular mesh was not sufficiently dense. Morgan states that a

mesh density on the order of 800 triangles per X. will produce an error of

27
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about 2% (6:209). Consequently, as a second trial case, the mesh

- .. density was increased to this value. The radius of the waveguide section

evaluated was .3Ao with a length of .4Ao . on-axis results are presented

in Figures 11, 12, 13 and 14.

.. In the sense of the error measurement being used, these results

are significantly better than those for the low mesh density. The square

root of the average squared error produced values of .137 for the magni-

tude of e and .223 for h In addition, the phases of both e and h

are very close to the theoretical values.

As a final trial, the length of the waveguide section was decreased

to .2 .0 with the same radius as the last case. With 96 triangular ele-

2ments, this configuration had a mesh density of 1600/Xo . Figures 15,

16, 17 and 18 contain the results.

Again, in the sense of the error measurement, the results continued

0 to improve. The average squared error for e is .0334 and .108 for h

For both azimuthal fields the phases are very good approximations to the

theoretical results.

Since none of the trials generated a good approximation to the magni-

tude of the standing wave in the interior of the model, the wave equation

for an arbitrary node was evaluated. The interior of the waveguide is

source free in which case the wave equation is

v2 + K2E 0 (69)

Expanding in terms of e and h this becomes

|__i ' 1 e 2e 2f- 3 R•(R =:J R(
R"R. aR

e 2 fmR o (70)

a-j*+e 2 3  azin
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Since a linear approximation to the fields is being used, the second

derivatives do not exist. For this reason, the assumption was made that

the fields were smoothly varying and central differences were used to

calculate eV the results was .1059. This indicates the wave equation

is approximately satisfied and the program is functioning properly.
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IV. Conclusions and Recommendations

Conclusions.

The algorithm used for the finite element implementation of the

CAP differential equations functioned properly. For the three mesh

densities used, the error measurement indicates the computed results

* are converging to the theoretical values as the mesh density is in-

creased. A logarithmic plot of these errors is given in Figure 19.

Error

> '_-' ii IT E3 l i 2Y h 0  error

.5

I • . ... .... .. ,7- e-- error

0- 7" Mesh Density

IlO lllOlll:l ll" il"

Figure 19. Plot of the Error Measurement for
Increasing Mesh Densities

This plot indicates that an extraordinarily dense mesh ( 7500) would

be reuqired to achieve acceptable results (2% error). Fr an inlet

model with reasonable dimensions, this mesh requirement is prohibitively

* large from a computational standpoint.
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The most likely cause of this problem is the enforcement of Dirichlet

,, *,;'" boundary conditions for the magnetic field along a conducting surface

instead of the Newmann condition. However, the Lagrangian functional for

the CAP equations cannot accommodate the Neumann boundary conditions.

Therefore the finite element calculation of the coupled azimuthal potentials

in the engine inlet model must be abandoned.

Recommendations

The finite difference method could be used to implement the CAP dif-

ferential equations directly. Additionally, the Neumann boundary condi-

tions for the magnetic field can be enforced quite readily. This

numerical method should be investigated extensively as a replacement for

the finite element method.

,.4
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APPENDIX A

Computer ProgramN!: ...

This appendix contains a listing of the computer program used for

implementing the finite element method. Definitions of all major var-

iables used in the program are provided.

Variables

RCORD(I) - Real; contains the R coordinate of the Ith node.

ZCORD(I) - Real; contains the Z coordinate of the Ith node.

PLYNML (I,J,K) - Real; contains the K coefficients of the linear
polynomial of node J on triangle K.

GAMMAS (I) - Complex; contains the values of the boundary conditions
for the azimuthal electric field.

BETAS(I) - Complex; contains the values of the boundary conditions
for the aximuthal magnetic field.

GAMNUM(I) - Real; contains the node number of the boundary condi-

tions specified in GAMMAS.

BETNUM(I) - Real; contains the node nubmer of the boundary condi-

tion specified in BETAS.

EQUTNI (I ,J) - Complex; contains all equations minimized with
respect to the electric field nodal values.

,*. EQJTN2 (I,J) - Complex; contains all equations minimized with
respect to the magnetic field nodal values.

ANSWR(I) - Complex, contains the final computed values of the
azimuthal fields.

,UUEL-Integer; the number of elements in the system.

MUMOD-Integer; the number of nodes in the system.

NODES(I,J) - Integer; contains the node numbers on each triangle.

INTGRL(I) - Real; contains the results of all integrals of the
form RrZs.

RSLT2(I) - Complex; contains the results of all integrals of the
form RIl

SYSTEM(I,J) - Complex; contains the system of equations defined
in the Lagrangian, before inversion.

46



/7

LiJ

(A- IAJ

En~ U LJ 0c",

~ft ~ oft

Lii 4c 141 Z)

U 0

o- _ l' LL M 0
m 09 Z. P. M wg

( I-L~LI ~ L 0 ~ .. "

CX m~g* z,. (.3j

U.1 4C W)fd Irs a--'( 0 Il
gg 0 0. U.4 to 3 p (

% Z. P4 C - (C 21-
(4 6- 1-40L 7*.4'W Z 40. X

I-. 11 7'O--L M. so* (D
th4-CT! C5 Z.U0 1

co .J U.1 m .4 L D Lii
o ~ ~ ~ ~ ~ ~ 6 Ofti a.Z Lir..Ii C0JC) Z~~t

Ix1 6j. J 1-1 *m.er4 Li0

cc Ch 0% uk 04 2c 1-W- C/' z Yi nCNX.- x
CID $ilI 0 m bl~4 Q)-~ 9 z X:04 *0 0-0 C e i
0. a. S. Iti~ 0 7I- CL (JAJ M ft

* .140 ir C)'4. N 2-~ uJ.o w .%0-n iL
C2 *bIaI0 IfI 0 0 WX w 1- . .. J. KYq i a a0(

NP 0* *bi. 0i 9 O 1-- e ul o. (nu re fr %Vca

3c a WUw dig (P) a 0 W 0
* ObZ u~ 0.4t 9-CN X 4 U

0 ~ ~ ~h l Im YW w 0004 -

C2 I. I. -k (A IP -i a -1 W.. . j X .r Q . w 61 C



La

ILL

wo 0.

mi 7i
0 flLI -. -

* z'

0.J 02 ((jA
-. Oft. 40

w z Liix c

M * 0 a0 00 *.-'
z 7 (0 %W

La dc W2: 31- 0 41
-w

%- 0 . 0

0 % Zz P0 I. w

2p ix- 0 7. w a4 .
LA W. Cl 0 W h Ix x WQe

cc i "L w xI- aU' w w Z LaiJ aw

MCD 30n -...aiz CL

0 * 3 m- 02 0XLiaca ui CU. C
wi0" W4 ~ 0 Q 0 sO 49Z(. :6 0ut
.'M %0 -- j% Uw.4 3PJZ4- "9Zs0&
%N 0 % l-. 1% 0i V481 ui _SXIV .

o xx 0- tU. Cn, w~i w LaX 1 w 5
a 4 1-J 0W W4 pO= ob 1-" (0 *a =4 0

%4 '%%% '%f cc % wit tD LI =) Li 0 zN 49

£000. a00 a e V4 0 c.,.J 0a C Wj6. V)) c j 6- .- 4 u win
JWwiJ wT2 7 vw t ,z W 0W4 wI.- b.. "N cc - j I- w w 4f4N

x2Z 0000 V4""Mm 0 loc 0 "LI mn
u L u 1 C I. . 93 a C-2Z 0 u 411 w

4 44 og0 Lii
AX Li 2 CieJ 0 E

u u - u C u u u

48



04

foft

0m 4

X4W
-)0 ZL&J

W 30. k. X f 44

CL LI __ onrl

1.4 z %Du x2ZI 0 0) X

11 0.i *p Z:J SX A
W 0 0Li mI'W) Z 0
0:Z'W) X X V V4 Za C2

C2 a N I%0S~ .CY 0. _ 1of "

cm WI-W 0Cs41 7w Z, -a

%0 cb qc dcJ %0 ^4 -w1-3 u1 0++ c' V4 9. 0
%0%0% 1 W 1 I0/w~'~% 0Vp~ V). -1c "

CD 4~ %. * .%% I
X .4ix . *x a:2: 61x 0 xZ P- X &1

C w / W V40C1 jCL 1 0-0 11 of /) 0.-4 lima lim 00

i 0 q'I h O. CI 00 00 0%-tw0bN7zI-j- A . :i .3r 1 0 OtV

At OcM 0 s 0 W t 0 7 . (JO v)O )1 7-1--) W :M

*J O ~ w - so 21 :p I-

CL 49N0c n 0 O

u0 Q Q

49



.1

- --2-o

;-,'--..-.-,

N -% 0-

-. -. r" 0'

!6 75 7' 7l 71.

00

- 'IV * 1-4 em

- 0 uI, . - ,

ti 0U~ xm 0.

- "
4 UNt in

%n0 c4 n %0,.

'.0 %0, C)4 m CLi'

1-4. *LD 0 ut N W

. 4 =. - . w ( 1 0% , o i.i , 41 -%k '

''1 - . W 0 I-U - 't 4 I '. I~ •L~ *'

e lie.,* C"43 0m .i .w -4 S ldX . • o.4 -,. "9 X , 4 -

'I% Lx %& 41 Of A% Of 4%
A%.d a 0Ot*'C\)~ N ~ %P0

vi a0 O 41 0 cl IN4
41 oft4 %0 * IWO *

4 .IW 1 % ) I / I% _ j Oft' 4 PeI. . J 1 1 , f - 1 ,, 'j

II ,4Cf)0 '-.-N *w 4 -) w e ,.-I - 0

,, 0 .40 Io,

,.. WQ7l ql O0 %0 W nl Y.' (r W) -c

L V0.4 IWO SY CL W . .- 61 0 CY

.O'f . ~04 Li'.4 o S U.

50 %0-1

4 %-0 &iJ0 *X ~ 41 4~r%. m .f. aU ;C l

- 4 VS 0% a x 0 1- r%. 4 O 4 4 ~ ~
(4 N W X w4 ~ a -0 N 16 V- -2U I'D -.-NU ~ N'0-ie~ Li - Q

1 W 41 * 0i.' 4 % ' & 0 0 ? p-- M- V 2 to \9 4%- NC

z " % A 0% X z? w Li 0 6-4 Z or reU ) W -a % z Li or IN. Wa m ?UU
3(0% '-a C. w. 6. 49 -4 0 y to) "- # 49 1 4 l CY "- " 04 K) v40 (9

,2

'° 00 %0O _ C o

oOC J*XX P a omwx a
0 9.4 ifo a 4t of0 - tI . - w P to fw "

z '5x ZV-4 C r.*" 0 0 0- V X t x . 0 ( .A

m P 14 7 N 0 w ..- 3" e " It41& NLA ' 50t b



o 2b

4 L .0 w
6- ZD 0 '. e

V)I ri loo -

Li 2 ( 4 (A

o Li 49 4-1

U. wi4 4

N. a

oY La W ~
0 0 X! 0-7d 0

N 4 6

% m4 W4 2
.. Ua. Q2 01JL CLVo I *V

0i Lii in LO 0 K4 j a.1
a ox49 0w01 Ia L- 0

z -z ww 0 _j" z

T 0 2 0 a4 K4 04zi -iJ J 3.Wos F0 L

me 0c1 LL u. - a Koap"%

X P4 *.2 4 x L 4W 00. 4 + j s

* CIO0 Q 0 0 IL&U 44 49 69 C30fo0 t_ 1 11 m oJ
0 0 Zlo n. o 1.J -j 4. Li' 0 L 200 9e 1L ) (

go a Lai.&& .J 0 -J6 w 9 0 WCZ9 W M W T
to .4% w I-K =. .a3L 0- m O 03 -CDc- tc4 3* 0 . o-0 C

ww0"CJ ~ 0Kf .. 2~00 0.- %p CDw 002 0
W W 4 w .4 ~ w 0 w 1 4 wPaU 61 l .7bI U.~ e
P- O 10 1.- 1. 444 2, ~ s. $,-5 J'4f. j ii.-1-.4w

Wa P "..~. 0 '02.jW 0 49 49 49 w1 cc

Vo 4p.~4 *~ 2 U4 4
4~~~~~~~~~~ U o~ ,~ ii 0 4 T~-~~~

~D~S@0-26.O0-4 00 Li"~~a.0 n51



7.~~ 7.7 7

+ -

II
dC[i

3 L1-4 P 1.1

0-3I. LJ z

. 4 CD d C0 - aC
.. K.~LI xf 2:0 1 C&r4w

*Y 4b 94 LoC InWw 0w 0- soW

+ LCCxx wq 0. ob I-a. am I.O
N i z 4 1-4. x X j* )Ot L

P4 49 4 an44 0=7U 4 -0 Li t0 m v
1 i PP1 20 Lii ar L~f cc Wv ZW

Z* j D X4 a .J 0" Xo~ " S34 :w

- LL XX.21C XX z I- ). fz 6. - u w. zL

('J Dw4 10 1 ~ ! i'4.-4' J MI W W 0 1 % 6 xc
W4 0 cr w.J 0 =d 0

2.1 at fe 4I 4wa0O4 0cc m (D W

V.4" 00 ww w r w om &-U $-I or. 49i 3
40u. 1. CO 0 =0 01 (A zI z'e 0z Wuv Ni

.3,53 Zcc~II~ 454 -0aJ 02.
1%. P V CM W* U"is )- %D- 0u

w0W -p. p~P. P~p I~s- W0~052



K ;p m

1- n -.

w ~. fn

ft af d ')-

b. 49 a- i %0

Cie, z L 9C" W-4 6
(x 49 49 0 i_ z x

N. 4 I. -4za f

Lj~ ~ ~ vp3-b. i - 0 a
0 W ~ U. V) W '. XP xh.J 0 .

-000 09 - 0y j4 zS W

7.3 w 6 . j .LZ
Z iW - 4 u W 0 P.Zz sk

.-OO 4l 0L LL ' 0-J~ .. Z -4 P )2i z

CA 0 1 T - 1wi Z W I-- 09. *2 ix0

& ~~Z &in(fl N4 IC LJ-0C UI-W n x -V

_j J eC' -I1.4 2'* ge 6') .40(.2 *,-qU L t3

0 4 04c 4I-.2 W j LL %D.4 ZO CL .~D "

0 w~ wZ~ SOZ x(n XCD CA a-

"i220 La C2 IW4 W0 6

40W d ) ) Z 1a "0- : 4 - IX %W 02 0003 40

0 C a a0 x " 190fl.- 1. 4 6- w wu 02"--s- f
zN U a aZa 0 %000 0tnh h722 0aNC

.4,P z z 094 0. 0 0 -
600%%0 z w 4 0 j z w 0 UW w r

%0 ~ ~ ~ -~.Qf itl W2 ir w O 0 0 c

WNNUUUU WO"b IUxg Uac c w M Z M 0

53



~Lj

:2.. 0 0

ONN X z

3cJL ww4 .1 .j a.

Kr o..e W4 4n li A& *%.4 S. JI -4
.J. 4 xX uM . i V.J4O -4 .4 -40-

z z* 'O of tC* LLCai ch4 Z 4 it It
z 03C 0 w ')0 X - :!

a.i 4f 0 2VP z 0 de W4 ca094 0 .0-&E.X-
P. 11 w a " of Lai X z x -J iU

CL" - a Z .w N.n(MJ4 cJO Wd04aa

o a st rlm mz J*.* 2! W unJ Z .Za.~
ILa% a Li V4tJLOz N u~*n i

K o No ZZ oxxxxxxK wo ..i zo f "e 40 0 409".4 0rt~ C n00nci 0 a co 0c
v .5 .JC40 6.5- 8.UUUUUU wu., XO 4.1 UO

NK 95 P% OO 0 Min
0 a.4 0 W000000 w 0 0

U 2p 1-0 U -Z2 22 JO ti

0 u0AL

0 CD 0- 1

6.4 9 LI54



W4 +

0 0D%0
ON N IV 0)df

0. i4 40* in4 14:

a% %. %004% - 0 4% 4C ) 6.. o% * 0% C :

3N r 1 7 @- ar ': I7 a %.P ft v f b-i m~ %0 0 . 1.1 %
ciel ri "N tvn O I ft0 0 "- 0 4 0l 0 414M(,

NI u U wU XU X U~ W x 14pOt%0xAf
n% 0 Ld 0 U-' 0 . n9 W fV LY P. cm . %. r -n up~k .

Z 0%- 444 a% 0 . 0 4 .1 S -14. 4 49.4 L)I.4 1-4 LL %oo -4 l %0

1.4 v4 0. " .4 .4 %0"% qW- 0L1%p a 4 CL0 0 %o cj
%o0.o ox P .. x ,x xx ~ Li Li LL4 0 + wL C- ' (,
rNXC\ILILIQL0LIOLI0C a. F' - 0L- . Jrix L'.

Q~i0 ~ 0 ' U U 0 ) 4C'j lip) Q 03 . 1-- -

U 4 7i Co 4a: Ra* -1 %0 .1 , -4

ZCZN~~~) 04 0(1O 41 oZ *%*U-L

%00~~ z a * 1. dt - c - a %W (:I V

%oX %o141% W w 4. 4J U .4 L 4 e. . o -i # U s4 .- C ; ft4 #. e. L M It' I

wI 0 xI In 2, a o~ x g0 c' 0 4 *U OW, ) -4 PO 6 u %.-. I.. -

0i LI a uI Z! uJ - 0 0 z 0 a- %%i I-V . 0I '. i .0
9*@00 0 0 wI 0 r Z XC c.y x b. . . - LI X-.J4 0 . 4 (J.

" / Z i so~ Z / c" Z Le %v x %o w w v4 A.- o -4 f c - - 1. -- 0% vtoc4 U. 4L

U 0 0 b'' -4 0 %0 z %10 fto -o %o %o %a eI a a9 ox

W . ZI X, MC' %0 0. -w ~ f L U U _jl N
SI~ j %P -j w. 0404 4 5, u,4 a . z 9-4 a. U 4 C.:) da W

o a UOS U 9- u ID U . 0 US 0 0 : (0 % V) % V) %0 %o %W _j

0f NL - LL a4 4-. of El .of u N0 u .of u re -or 41 Me- mn tmr 4 e4

%0 55% f;foI . 0 9p . r a r)04 1 o%



-. ~ ~~~~ 0. . . - -- .. -

. . . . . . . . . . . .. . . . . .

11

W9w 6 nn ry' 4
1. -0- x~ E"L

;r w %0 07 oft n.. n~ n~4 ~ i
0- U- 4 M 0% 0. 0%TUi.ul t 44

0 Q. %0 a V4 Nv C~, CLi' % -P 41 0

~~~n %. on ,. 67 nk4
- 6- w I P. U,- (1 4 L& -. - u 3-4 L 4 #

IL cQ *v-4* ('C'Cr w.'f ; ! 4rq .Jd 44+ 0 "14 *'V
zn 7V.) V =. ID ;f, .7' .0f C0A4 V-CC;* 4'4 f 0% %0%Voe
%0 ~0 %0U0 %e 0 0 0& U~ a-U Lo A1-4 v

0 0 (3 I Z, a- u **. W x x P-1 0 ou
4 0U WU '-~0 oz *0 T~ w t.i.U rlf £1.
rf 0%Lr iv ( 0fl 4Lm U 0 * .7 0 4 ' 41 0 1-

0% a- % % 0 4 4: 1-4 11 44 uw W* W CL
u wc %o %A:~J %.4(0 L~ 0X. Z* m aj. M

W S 0n 0 0 *rQ V4 IAJ w~~4 1-~z GO(' I- 39~~(V-
-4 4CCV4 q 4 -4m x 0 31~ 2- A2 ix tz O -.J U IJ LJ 4 4

*44 g4 *4 lu L) 0. :'f .3 U .1x, "1 0 0 0 m - %01
am 0 z# J 0 n LiJ %r1 21 -4CYZ V )4.

N w" N0QO NOW- 0~f1f Z-VI * 0Cp

zZ4r tJ- w ml 4 6Y or 0* %0Pe I I 0i

WWNXKX .X rI iJ-j _ . -d j_ j_

W w Yo

I-i

IL Its

CCie

56

-0 NL.-



. . . . . . . .. . . . . . . . . . . . . . . .._- -.- ..

Of 40 - _ .. - -

x 1% 104 -

p. Ii.0 r_ CI ... 0% 1 X C"

ur. _j -1 .4 1- r- _~ j

IJ ar I--. * ix 1- Xe .4 - Z;i Na I- -I J
-" U 1 41 17. - 0- r s 0 I

w 0% U.0 _j ;*,' .*.-4.. q I-.

-.411 Za UU Z~ a- 1- WI W j;, Z- WL

0 .Al. 0 .. a. x L1 L0 - - -C

U -. 1 L) 0-4 w ~ ~ O V W 0 C

%00 1 0 j a)_ x ~ C -q...

+i b- 4AC~O 0 -1- 0 a +r

.Jo IAOy 1. e P -4 - 0 -- 41- 4)

C4 1t-,L 0% 0i O * J X X X *X5- CL *X X P -

a, %O 1K - , .D0 00w % I .
CLU-10 Cflo ZI' j -%D- v 10 J jX I- j

CL ~ ~ cc11)1 x0 4..0 -x xX04x2 . :.

o a -

.4 64 r C

zr uu

-- A4

'.CD

( Al

d 57



S...,

x Li J

x T t I X-37 IT ;;
LaJ w OLIX - L) (.j qd

e,0 ;p o -4 4w a. P ifl It

0.L~A WL M T- L c L0-6
%l otl.iJ 0LcO 41 1

V4 V4 u5

30- 40tN0Li _ 1 p 0 0 :2i~ 1 -2 '.C.CL,

j xIV : nJ 0 _ )- -4L -4, A* Of000 n4

)- 0V! .53 %V14-0 Ot0IJ0 0% X . %

X .O.N w W c - ai *"4 ~ X 0 C OF 4J 0
*'m mz 0* *2 w 1-4 w*" q-0 w ww w tj Z

MW V - CMWJ In & 1- -1x 0~ x 0-"v 0 -1 -j -1 4.-

X X X 31-n o0 t X 0.- (A'
W. W La La N i aW a 0d 0 W

.. C.4z aI.-~" IS X "4 4 U) Li
b. 0. "U~" " W"W wmwwC

x -;.1~ C.0 )wt

u l'- m20 1-0 t- t
222 4c w 0 wL~

UW O& W a. I ar ut

555

UUC.)-A



10 2: %-2 -3

CL -i - 1

30 " 0 " - 0

* * Of. 0- i L 0%

C' ,

& 0 0 w J

Fn W4. 0r 0w w-
go go %0 a .. U0a C'J

-4 0 0ZZN

6 @0 0 0 If & lp o 0,1
w N4 (.1 ix 0 U.1 41 %

0C IC a a a9 w n0 n4 A0
0%. j...!U 1-- 49 .0L 0 w 17 w w - w 17
in bVI w "W 00m -000 'PC -00. %DA .1J 0. ,0"vQ .

Ai 00 L4-ZVs0 Z- II %.J
ci ).0 N~- C '. Tw x3 n m c~

w Li 0 w. %v %*,..NNC'0 %pz
Lb z 00 xx x x D o 49 3 m
W 49 -J X M2 CL Ut&JWW W U. 9- U 0u1-
6- dw4 9 0Z r C3 0fn n0 m &.
z OLS W 00 JZZZ wo Li Ow
04 orwfY tCiLi w .4b.4a.14 aO a

0~ U 3

59



14 LA

.7 UJV.
.- LJI I,, 2?

W
1  a

fn 4 s-

C-- V-4i.- 0'j -r 0

La.jC Of =) 2 zD- )0%%0 LJ 0
z 1.- 17 .7V I 0 .pnmNz f

0 V) 4, X oS 4() r% 3
A ~ ' W* Vt C500d o2C

3P.-C .. ,-.J 0% 0% L o%0)9U CD 0)0 C

J 0+Z: C'J~* of I-J 0 2V -

atMz =% 4 K W4~~O c LI. Ix 0%W.

0 .J~ 0 ccX X S4) -4 r' f j : W i)1 *- *-- P 0

a CO "2 . V-4p. 0 c X%. 4 Z.~ 49Q 11 X W

L0 e s-CJVC. z- m 02 m 13 w c o 0ml'U)I- C3l lI.-

li') wd C )W W,- LI Z Z oV) Zau'' CD&J 0''.
a01a :) )- I.- g iI~@ wO wCl.J- N.- 0 f4L"31 hI0C: 2

J cc o ce .- xj -0~ -O4 00 i I =(D(D(a 0 cc1- C2~ Z IC
cc~2Of~m~ CO~ D2'- at2 0 Ea a L 2-i rewwX t -

0 W AW- 04 Zb nO UOr x r orb4I. O0 2

z 1 t Z1 =I CD UJIa a 0~ U OJJL (AZ Z O6 C 11 a Vt

6.4 -1W i (Al 0 0 wa
T ZCo )1-4 zu 0 -1

60



I a%

CL0 x

70-4 - 1. .1 2e
I-~ I I* C. t..

N #

zas- S 0-

o ,o 4W11 4c II IL-L U.1 N

s-ex =) 3:.-bo b-. Zb
I-0 1- A.1~- W) ~ Q

z2 a- a2 ND W 24CY)~

o 0: ai Q00
+ WO 0 z0 %0

4 T * zm0 X3% ,a )mZ
00 =)2'0 d 0 0 C -

CC .4 C IA Ya CY I II i 0 4 C.10 -I
Z:I 0 4ff )l (L P. -n &oC . . i 4 e

(c.: LiXCL04- . n0 o Wq1m tv
V.It0L. c o tN- o X4. ai Z %l xcct j PoX1L

(\ . ~ mm " La %& 49 .....................................



I-7,

0 N3

11 LLJ X -

o -4

id 2

LJ 0 0

$- Z 3 ft Du wNo

z *c0 0 .

. Z "~i -. M _

- a w e x

ca I I. cm

o Zt~ LI 062



': : VITA

f Thnas Gerard Cooper was born on 30 december 1955 in Port Huron,

Michigan. He graduated fran high school in Bad Axe, Michigan in 1974

and attended the U.S. Air Force Academy fran which he received the degree

Bachelor of Science in Electrical Engineering. Upon graduation he was

assigned to the Air Force Avionics Laboratory and worked in the Digital

Signal Processing group until entering the School of Engineering, Air

Force Institute of Technology, in June 1981.

Permanent address: 1048 West Northwood Drive

Caro, Michigan 48723

5-
.5

t'SD



- . .- -. -.... - - -,.-. --. o . .- ,

Unha s jf i ed
SECURITY CL ASS' PICAT iO OF THIS-ASE ("-ei Data Entered)

REPORT DOCUM ENTATION PAGE READ INSTRUCTIONS
REPORTDOCUMENTATIONPAGE BEFORE COMPLETING FORM

1. REPORT NU'MER 2. GOVT AC S 10 NO. . PECI 'FP'T-w CATALOG NUMBER

"o0, AFIT/GE/EE/82D-2
4. TITLE (and Subtitle) S. TYFE OF APOP T 6 PERIOD COVERED"' , I....

A FINITE ELE4ENT CcMPUTATICN OF THE MS Thesis-LIr 4AiIEI FIELDS IN AN aJIN INLET
GII6. PERFOrMING ORG. REPORT NUMBER

DEL

7. AUTHOR(@) S. CONI RACT OR GRANT NUMBER(s)

T h ma s G . C o o p e r ,lL t

. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PPOGPM LEMENT. PROJECT. TASK
APESA A WORK UNIT NUMBERS

Air Force Institute of Technology (AFIT-E)
Wright-Patterson AFB, Ohio 45433

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Decenber,1982

,s. NJI SEP OF PAGES

____. 64
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Ollice) 15. SECURITY CLASS. (o1 this report)

Unclassif ied
ISO. DECLASSI FICATION/ DOWN GRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (o this Report)

Approved for public release; distribution unlimited

-'
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it #f1ferent from Report)

1S. SUPPLEMENTARY NOTES

a~xm#ml.ea 'AW , w R,w'h oved for public release; IAW AFR 190-17

Pew ot e=, , and fo. oes3lool De.OpL0. 4 JA N W3
ga-th &a---t . AF OIL, 45Q2

IS1. ICE'riWOS (Continue on reverse aide it neceiary and iden4ify by block numiber)

Finite Element Method
Coupled Azimuthal Potentials
Electrmaggnetic Scattering
Engine Inlet

20. ABSTRACT (Continue on revere side It necessary end Identify by block number)

The method of coupled azimuthal potentials (CAP) was applied to a
waveguide model of an axially symmetric engine inlet to analyze the fields
in the region where the front face of the engine terminates the waveguide.
Appropriate boundary conditions were derived and the finite element method
was used to solve for the potentials.

The Lagrangian of the CAP equations does not provide for the enforce-
ment of Neumann boundary conditions. This prevents exact inplementation
of the correct bound conditions for the azimuthal etic field.

DD , AM17 1473 EDITION OF I NOV65 1S OBSOLETE

I.CUR... .. .IC.T.o. OF THIS PAGE Da Moor"



r- - N .-' , -_" -. .,'. ' -_ . - ..... ' ..' f . -". . . . " - . i . '-- - ... " . - . - . - • - ." . . .- " .- - . .-

tc nlassified
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Dirichlet boundary conditions for the azimuthal electric and magnetic fields
were enforced for a standing wave condition in the inlet model with a con-
ducting back plate termination. The computed values for the interior field
components were compared with the theoretical values by evaluating the stan-
dard deviation. Three trials were performed with varying finite element mesh
densities. It was found that as the mesh density increased, the standard
deviation for the canputed field components decreased. However, from an
interpolation of the error measurements, it was determined that an extremely
fle mesh is required for an acceptable error (approximately 7500 tringles/
X for 2% error). For this reason the finite element implementation of the
cRP equations for this jet engine inlet model is unfeasible.

Un-classif ied

SECURITY CLASSIFICATION OF THIS PAGE(fhen Does Enteted)

;.. .

i. . . .. . .

-s . - . - . 2- 2 ~ .


